

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

English for Technology [S2Elmob1>JAwT]

Course

Field of study Year/Semester

Electromobility 1/1

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

second-cycle Polish

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 0

Tutorials Projects/seminars

30 0

Number of credit points

2,00

Coordinators Lecturers

mgr inż. Krystyna Ciesielska krystyna.ciesielska@put.poznan.pl

Prerequisites

Language competence compatible with level B2 (CEFR); knowledge of selected field -specific vocabulary; ability to use various sources of information. Readiness to follow group work rules and to work in a team.

Course objective

To develop the student's ability to use academic and field-specific language effectively in speech and writing, in a number of complex tasks. To develop the student's ability to analyze critically field-specific texts. To encourage buildup of field-specific vocabulary.

Course-related learning outcomes

Knowledge:

The student understands the differences between written and spoken forms of English. The student has acquired field-specific vocabulary related to renewable energy sources and sustainable growth and smart and environmentally-friendly solutions, energy storage, vehicles using renewable power, autonomous vehicles, MaaS, cybersecurity.

Skills:

The student is able to write an abstract of their diploma thesis, a summary of a scientific article written in English, and a project report, using an appropriate linguistic and grammatical repertoire. The student is able to give a presentation on a field-specific or popular science topic (in English), and discuss general and field-specific issues, analyzing constraints and feasible solutions. The student is able to understand and analyze international, field-specific literature, assess the merit of resource materials, and use incomplete/partially unreliable resources. The student is able to participate in a discussion on a field specific/professional topic, using 'ad rem' arguments.

Social competences:

The student is able to communicate effectively in general and field-specific areas, and communicate in English in public.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Regular assessment of in-class performance and home assignments: individual and/or group presentations and projects, written tasks, participation in discussions and debates. Optionally, a written quiz featuring a battery of tests. Successful completion of all assignments is required to obtain a pass

Programme content

Writing abstracts, summaries and reports. Presentations. Specialist topics. The structure of a research paper.

Course topics

Modern ways of generating electrical energy. Energy storage. Autonomous vehicles and cybersecurity. Mobility as a service (MaaS). Advances in electromobility. Climate and energy policies in Poland and the EU.

Teaching methods

Classroom activities guided by the communicative approach. Project-based learning. Text-based mediation activities.

Bibliography

Basic:

Systems Perspectives on Electromobility Edition: 1.1 Publisher: Chalmers University of Technology; https://publications.lib.chalmers.se/records/fulltext/182216/local_182216.pdf Editor: Björn Sandén ISBN: ISBN 978-91-980973-1-3. Available online as of 21 July 2023

Sarasini, S, 2014. Systems Perspectives on Renewable Power. Edition: 1.1. Publisher: Chalmers University of Technology https://publications.lib.chalmers.se/records/fulltext/210498/local_210498.pdf Editor: Björn Sandén ISBN: 978-91-980974-0-5. Available online as of 21 July 2023

Additional:

Bailey, S. 2011. Academic Writing: A handbook for international students. Routledge

Banks, T. 2012. Writing for Impact. Cambridge: Cambridge University Press

Bonamy, D. 2011. Technical English. Pearson Education Limited. (Level 3, Level 4)

Brieger, N., and Pohl, A. 2002. Technical English Vocabulary and Grammar. Summertown: Summertown Publishing

Campbell, S. 2009. English for the Energy Industry. Oxford: Oxford University Press

Dubis, A. and Firganek, J. 2006. English through Electrical and Energy Engineering. Kraków: Studium Praktycznej Nauki Języków Obcych Politechniki Krakowskiej

Gajewska-Skrzypczak, I. and Sawicka, B. 2013. English for Electrical Engineering. Poznań: Publishing House of Poznan University of Technology

Murphy, R. 2012. English Grammar in Use. Cambridge: Cambridge University Press (all levels)

Oshima, A. and Hogue, A. 2006. Writing Academic English. White Plains: Pearson Education, Inc.

https://climate.ec.europa.eu/eu-action/climate-strategies-targets/progress-made-cutting-emissions/governance-energy-union-and-climate-action en

cinissions/governance-energy-union-and-oimate

Internet sources

Breakdown of average student's workload

	Hours	ECTS
Total workload	55	2,00
Classes requiring direct contact with the teacher	30	1,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	25	1,00